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BlockMatrix Combine Matrices into a Block Diagonal Matrix

Description

Creates a block diagonal matrix with its arguments as the blocks.

Usage

BlockMatrix(...)

Arguments

... Matrices that should be put on the diagonal.

Details

BlockMatrix() tries to coerce its arguments to a matrix, using as.matrix.

Value

Block diagonal matrix having the specified matrices on its diagonal.

Author(s)

Dylan Beijers, <dylanbeijers@gmail.com>

Examples

BlockMatrix(diag(ceiling(9 * stats::runif(5))), matrix(1:8, 4, 2), c(14, 8))
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Cholesky Construct a Valid Variance - Covariance Matrix

Description

Constructs a valid variance - covariance matrix by using the Cholesky LDL decomposition.

Usage

Cholesky(param = NULL, format = NULL, decompositions = TRUE)

Arguments

param Vector containing the parameters used to construct the variance - covariance
matrix.

format Matrix representing the format for the Loading matrix L and Diagonal matrix
D. The lower triangular part of the format is used as the format for the Loading
matrix L. The diagonal of the format is used as the format for the Diagonal
matrix D. Must be a matrix.

decompositions Boolean indicating whether the loading and diagonal matrix of the Cholesky
decomposition, and the correlation matrix and standard deviations should be
returned.

Details

format is used to specify which elements of the loading and diagonal matrix should be non-zero.
The elements of param are then distributed along the non-zero elements of the loading and diagonal
matrix. The parameters for the diagonal matrix are transformed using exp(2 * x).

Value

A valid variance - covariance matrix. If decompositions = TRUE then it returns a list containing:

• cov_mat: The variance - covariance matrix.
• loading_matrix: The loading matrix of the Cholesky decomposition.
• diagonal_matrix: The diagonal matrix of the Cholesky decomposition.
• correlation_matrix: Matrix containing the correlations.
• stdev_matrix: Matrix containing the standard deviations on the diagonal.

Author(s)

Dylan Beijers, <dylanbeijers@gmail.com>

Examples

format <- diag(1, 2, 2)
format[2, 1] <- 1
Cholesky(param = c(2, 4, 1), format = format, decompositions = TRUE)
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CoeffARMA Transform arbitrary matrices into ARMA coefficient matrices

Description

Creates coefficient matrices for which the characteristic polynomial corresponds to a stationary
process. See Ansley and Kohn (1986) for details about the transformation used.

Usage

CoeffARMA(A, variance = NULL, ar = 1, ma = 0)

Arguments

A An array of arbitrary square matrices in the multivariate case, or a vector of
arbitrary numbers in the univariate case.

variance A variance - covariance matrix. Note: variance not needed for the univariate
case!

ar The order of the AR part.

ma The order of the MA part.

Value

If multivariate, a list containing:

• An array of coefficient matrices for the AR part.

• An array of coefficient matrices for the MA part.

If univariate, a list containing:

• A vector of coefficients for the AR part.

• A vector of coefficients for the MA part.

Author(s)

Dylan Beijers, <dylanbeijers@gmail.com>

References

Ansley CF, Kohn R (1986). “A note on reparameterizing a vector autoregressive moving average
model to enforce stationarity.” Journal of Statistical Computation and Simulation, 24(2), 99–106.

Examples

CoeffARMA(A = stats::rnorm(2), ar = 1, ma = 1)
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FedYieldCurve Federal Reserve Interest Rates

Description

A dataset containing the interest rates of the Federal Reserve, from January 1982 up to April 2022.
The interest rates are market yields on United States Treasury securities with constant maturity
(CMT). The maturities contained in this dataset are the 3 months, 6 months, 1 year, 2 years, 3 years,
5 years, 7 years, and 10 years maturities. Each interest rate is quoted on investment basis, and are
reported monthly.

Usage

FedYieldCurve

Format

A data frame with 484 rows and 9 variables:

Month The month of the quoted interest rates, format is yyyy-mm-dd

M3 Market yield on U.S. Treasury securities at 3-month constant maturity, quoted on investment
basis, in percent per year.

M6 Market yield on U.S. Treasury securities at 6-month constant maturity, quoted on investment
basis, in percent per year.

Y1 Market yield on U.S. Treasury securities at 1-year constant maturity, quoted on investment
basis, in percent per year.

Y2 Market yield on U.S. Treasury securities at 2-year constant maturity, quoted on investment
basis, in percent per year.

Y3 Market yield on U.S. Treasury securities at 3-year constant maturity, quoted on investment
basis, in percent per year.

Y5 Market yield on U.S. Treasury securities at 5-year constant maturity, quoted on investment
basis, in percent per year.

Y7 Market yield on U.S. Treasury securities at 7-year constant maturity, quoted on investment
basis, in percent per year.

Y10 Market yield on U.S. Treasury securities at 10-year constant maturity, quoted on investment
basis, in percent per year.

Source

https://www.federalreserve.gov/datadownload/Build.aspx?rel=H15

Examples

data(FedYieldCurve)

https://www.federalreserve.gov/datadownload/Build.aspx?rel=H15
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predict.statespacer State Space Model Forecasting

Description

Produces forecasts and out of sample simulations using a fitted State Space Model.

Usage

## S3 method for class 'statespacer'
predict(
object,
addvar_list_fc = NULL,
level_addvar_list_fc = NULL,
self_spec_list_fc = NULL,
forecast_period = 1,
nsim = 0,
...

)

Arguments

object A statespacer object as returned by statespacer.

addvar_list_fc A list containing the explanatory variables for each of the dependent variables.
The list should contain p (number of dependent variables) elements. Each ele-
ment of the list should be a forecast_period x k_p matrix, with k_p being the
number of explanatory variables for the pth dependent variable. If no explana-
tory variables should be added for one of the dependent variables, then set the
corresponding element to NULL.

level_addvar_list_fc

A list containing the explanatory variables for each of the dependent variables.
The list should contain p (number of dependent variables) elements. Each ele-
ment of the list should be a forecast_period x k_p matrix, with k_p being the
number of explanatory variables for the pth dependent variable. If no explana-
tory variables should be added for one of the dependent variables, then set the
corresponding element to NULL.

self_spec_list_fc

A list containing the specification of the self specified component. Does not
have to be specified if it does not differ from self_spec_list as passed on
to statespacer. If some system matrices are time-varying then you should
specify this argument. See statespacer for details about the format that must
be followed for this argument.

forecast_period

Number of time steps to forecast ahead.

nsim Number of simulations to generate over the forecast period.

... Arguments passed on to the predict generic. Should not be used!
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Value

A list containing the forecasts and corresponding uncertainties. In addition, it returns the compo-
nents of the forecasts, as specified by the State Space model.

Author(s)

Dylan Beijers, <dylanbeijers@gmail.com>

References

Durbin J, Koopman SJ (2012). Time series analysis by state space methods. Oxford university
press.

Examples

# Fit a SARIMA model on the AirPassengers data
library(datasets)
Data <- matrix(log(AirPassengers))
sarima_list <- list(list(s = c(12, 1), ar = c(0, 0), i = c(1, 1), ma = c(1, 1)))
fit <- statespacer(y = Data,

H_format = matrix(0),
sarima_list = sarima_list,
initial = c(0.5*log(var(diff(Data))), 0, 0))

# Obtain forecasts for 100 steps ahead using the fitted model
fc <- predict(fit, forecast_period = 100, nsim = 10)

# Plot the forecasts and one of the simulation paths
plot(fc$y_fc, type = 'l')
lines(fc$sim$y[, 1, 1], type = 'p')

SimSmoother Generating Random Samples using the Simulation Smoother

Description

Draws random samples of the specified model conditional on the observed data.

Usage

SimSmoother(object, nsim = 1, components = TRUE)

Arguments

object A statespacer object as returned by statespacer.

nsim Number of random samples to draw. Defaults to 1.

components Boolean indicating whether the components of the model should be extracted in
each of the random samples.
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Value

A list containing the simulated state parameters and disturbances. In addition, it returns the compo-
nents as specified by the State Space model if components = TRUE. Each of the objects are arrays,
where the first dimension equals the number of time points, the second dimension the number of
state parameters, disturbances, or dependent variables, and the third dimension equals the number
of random samples nsim.

Author(s)

Dylan Beijers, <dylanbeijers@gmail.com>

Examples

# Fits a local level model for the Nile data
library(datasets)
y <- matrix(Nile)
fit <- statespacer(initial = 10, y = y, local_level_ind = TRUE)

# Obtain random sample using the fitted model
sim <- SimSmoother(fit, nsim = 1, components = TRUE)

# Plot the simulated level against the smoothed level of the original data
plot(sim$level[, 1, 1], type = 'p')
lines(fit$smoothed$level, type = 'l')

statespacer State Space Model Fitting

Description

Fits a State Space model as specified by the user.

Usage

statespacer(
y,
H_format = NULL,
local_level_ind = FALSE,
slope_ind = FALSE,
BSM_vec = NULL,
cycle_ind = FALSE,
addvar_list = NULL,
level_addvar_list = NULL,
arima_list = NULL,
sarima_list = NULL,
self_spec_list = NULL,
exclude_level = NULL,
exclude_slope = NULL,
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exclude_BSM_list = lapply(BSM_vec, function(x) 0),
exclude_cycle_list = list(0),
exclude_arima_list = lapply(arima_list, function(x) 0),
exclude_sarima_list = lapply(sarima_list, function(x) 0),
damping_factor_ind = rep(TRUE, length(exclude_cycle_list)),
format_level = NULL,
format_slope = NULL,
format_BSM_list = lapply(BSM_vec, function(x) NULL),
format_cycle_list = lapply(exclude_cycle_list, function(x) NULL),
format_addvar = NULL,
format_level_addvar = NULL,
fit = TRUE,
initial = 0,
method = "BFGS",
control = list(),
collapse = FALSE,
diagnostics = TRUE,
standard_errors = NULL,
verbose = FALSE

)

Arguments

y N x p matrix containing the N observations of the p dependent variables.

H_format Format of the H system matrix, the variance - covariance matrix of the observa-
tion equation.

local_level_ind

Boolean indicating whether a local level should be added to the state space
model.

slope_ind Boolean indicating whether a local level + slope should be added to the state
space model.

BSM_vec Vector containing the BSM seasonalities that have to be added to the state space
model.

cycle_ind Boolean indicating whether a cycle has to be added to the state space model.

addvar_list A list containing the explanatory variables for each of the dependent variables.
The list should contain p (number of dependent variables) elements. Each el-
ement of the list should be a N x k_p matrix, with k_p being the number of
explanatory variables for the pth dependent variable. If no explanatory variables
should be added for one of the dependent variables, then set the corresponding
element to NULL.

level_addvar_list

A list containing the explanatory variables for each of the dependent variables.
The list should contain p (number of dependent variables) elements. Each el-
ement of the list should be a N x k_p matrix, with k_p being the number of
explanatory variables for the pth dependent variable. If no explanatory variables
should be added for one of the dependent variables, then set the corresponding
element to NULL.
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arima_list Specifications of the ARIMA components, should be a list containing vectors of
length 3 with the following format: c(AR, I, MA). Should be a list to allow dif-
ferent ARIMA models for different sets of dependent variables. Note: The AR
and MA coefficients are constrained such that the AR component is stationary,
and the MA component is invertible. See Ansley and Kohn (1986) for details
about the transformation used.

sarima_list Specifications of the SARIMA components, should be a list containing lists that
contain 4 named vectors. Vectors should be named: "s", "ar", "i", "ma". Should
be a list of lists to allow different SARIMA models for different sets of depen-
dent variables. Note: The AR and MA coefficients are constrained such that
the AR components are stationary, and the MA components are invertible. See
Ansley and Kohn (1986) for details about the transformation used. Note: For
multivariate models, the order of "s" matters, as matrix multiplication is not
commutative!

self_spec_list A list containing the specification of the self specified component. See the De-
tails section for extensive details about the format that must be followed for this
argument.

exclude_level Vector containing the dependent variables that should not get a local level.

exclude_slope Vector containing the dependent variables that should not get a slope.
exclude_BSM_list

List of vectors, each vector containing the dependent variables that should not
get the corresponding BSM component.

exclude_cycle_list

The dependent variables that should not get the corresponding cycle component.
Should be a list of vectors to allow different dependent variables to be excluded
for different cycles.

exclude_arima_list

The dependent variables that should not be involved in the corresponding ARIMA
component. Should be a list of vectors to allow different dependent variables to
be excluded for different ARIMA components.

exclude_sarima_list

The dependent variables that should not be involved in the corresponding SARIMA
component. Should be a list of vectors to allow different dependent variables to
be excluded for different SARIMA components.

damping_factor_ind

Boolean indicating whether a damping factor should be included. Must be a
vector if multiple cycles are included, to indicate which cycles should include a
damping factor.

format_level Format of the Q_level system matrix the variance - covariance matrix of the
level state equation.

format_slope Format of the Q_slope system matrix, the variance - covariance matrix of the
slope state equation.

format_BSM_list

Format of the Q_BSM system matrix, the variance - covariance matrix of the
BSM state equation. Should be a list to allow different formats for different
seasonality periods.
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format_cycle_list

Format of the Q_cycle system matrix, the variance - covariance matrix of the
cycle state equation. Should be a list to allow different formats for different
cycles.

format_addvar Format of the Q_addvar system matrix, the variance - covariance matrix of the
explanatory variables state equation.

format_level_addvar

Format of the Q_level_addvar system matrix, the variance - covariance matrix
of the explanatory variables of the level state equation.

fit Boolean indicating whether the model should be fit by an iterative optimisation
procedure. If FALSE, the model is only evaluated at the initial values.

initial Vector of initial values for the parameter search. The initial values are recycled
or truncated if too few or too many values have been specified.

method Method that should be used by the optim or optimr function to estimate the
parameters. Only used if fit = TRUE.

control A list of control parameters for the optim or optimr function. Only used if fit
= TRUE.

collapse Boolean indicating whether the observation vector should be collapsed. Should
only be set to TRUE if the dimensionality of the observation vector exceeds the
dimensionality of the state vector. If this is the case, computational gains can be
achieved by collapsing the observation vector.

diagnostics Boolean indicating whether diagnostical tests should be computed. Defaults to
TRUE.

standard_errors

Boolean indicating whether standard errors should be computed. numDeriv
must be installed in order to compute the standard errors! Defaults to TRUE if
numDeriv is available.

verbose Boolean indicating whether the progress of the optimisation procedure should
be printed. Only used if fit = TRUE.

Details

To fit the specified State Space model, one occasionally has to pay careful attention to the initial
values supplied. See vignette("dictionary", "statespacer") for details. Initial values should
not be too large, as some parameters use the transformation exp(2x) to ensure non-negative values,
they should also not be too small as some variances might become relatively too close to 0, relative
to the magnitude of y.

If a component is specified without a format, then the format defaults to a diagonal format.

self_spec_list provides a means to incorporate a self-specified component into the State Space
model. This argument can only contain any of the following items, of which some are mandatory:

• H_spec: Boolean indicating whether the H matrix is self-specified. Should be TRUE, if you
want to specify the H matrix yourself.

• state_num (mandatory): The number of state parameters introduced by the self-specified
component. Must be 0 if only H is self-specified.
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• param_num: The number of parameters needed by the self-specified component. Must be
specified and greater than 0 if parameters are needed.

• sys_mat_fun: A function returning a list of system matrices that are constructed using the
parameters. Must have param as an argument. The items in the list returned should have any
of the following names: Z, Tmat, R, Q, a1, P_star, H. Note: Only the system matrices that
depend on the parameters should be returned by the function!

• sys_mat_input: A list containing additional arguments to sys_mat_fun.

• Z: The Z system matrix if it does not depend on the parameters.

• Tmat: The T system matrix if it does not depend on the parameters.

• R: The R system matrix if it does not depend on the parameters.

• Q: The Q system matrix if it does not depend on the parameters.

• a1: The initial guess of the state vector. Must be a matrix with one column.

• P_inf: The initial diffuse part of the variance - covariance matrix of the initial state vector.
Must be a matrix.

• P_star: The initial non-diffuse part of the variance - covariance matrix of the initial state
vector if it does not depend on the parameters. Must be a matrix.

• H: The H system matrix if it does not depend on the parameters.

• transform_fun: Function that returns transformed parameters for which standard errors have
to be computed. Must have param as an argument.

• transform_input: A list containing additional arguments to transform_fun.

• state_only: The indices of the self specified state that do not play a role in the observation
equations, but only in the state equations. Should only be used if you want to use collapse
= TRUE and have some state parameters that do not play a role in the observation equations.
Does not have to be specified for collapse = FALSE.

Note: System matrices should only be specified once and need to be specified once! That is, system
matrices that are returned by sys_mat_fun should not be specified directly, and vice versa. So,
system matrices need to be either specified directly, or be returned by sys_mat_fun. An exception
holds for the case where you only want to specify H yourself. This will not be checked, so be aware
of erroneous output if you do not follow the guidelines of specifying self_spec_list. If time-
varying system matrices are required, return an array for the time-varying system matrix instead of
a matrix.

Value

A statespacer object containing:

• function_call: A list containing the input to the function.

• system_matrices: A list containing the system matrices of the State Space model.

• predicted: A list containing the predicted components of the State Space model.

• filtered: A list containing the filtered components of the State Space model.

• smoothed: A list containing the smoothed components of the State Space model.

• diagnostics: A list containing items useful for diagnostical tests.
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• optim (if fit = TRUE): A list containing the variables that are returned by the optim or optimr
function.

• loglik_fun: Function that returns the loglikelihood of the specified State Space model, as a
function of its parameters.

• standard_errors (if standard_errors = TRUE): A list containing the standard errors of the
parameters of the State Space model.

For extensive details about the object returned, see vignette("dictionary", "statespacer").

Author(s)

Dylan Beijers, <dylanbeijers@gmail.com>

References

Durbin J, Koopman SJ (2012). Time series analysis by state space methods. Oxford university
press.

Ansley CF, Kohn R (1986). “A note on reparameterizing a vector autoregressive moving average
model to enforce stationarity.” Journal of Statistical Computation and Simulation, 24(2), 99–106.

Examples

# Fits a local level model for the Nile data
library(datasets)
y <- matrix(Nile)
fit <- statespacer(initial = 10, y = y, local_level_ind = TRUE)

# Plots the filtered estimates
plot(

1871:1970, fit$function_call$y,
type = "p", ylim = c(500, 1400),
xlab = NA, ylab = NA

)
lines(1871:1970, fit$filtered$level, type = "l")
lines(

1871:1970, fit$filtered$level +
1.644854 * sqrt(fit$filtered$P[1, 1, ]),

type = "l", col = "gray"
)
lines(

1871:1970, fit$filtered$level -
1.644854 * sqrt(fit$filtered$P[1, 1, ]),

type = "l", col = "gray"
)

# Plots the smoothed estimates
plot(

1871:1970, fit$function_call$y,
type = "p", ylim = c(500, 1400),
xlab = NA, ylab = NA

)
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lines(1871:1970, fit$smoothed$level, type = "l")
lines(

1871:1970, fit$smoothed$level +
1.644854 * sqrt(fit$smoothed$V[1, 1, ]),

type = "l", col = "gray"
)
lines(

1871:1970, fit$smoothed$level -
1.644854 * sqrt(fit$smoothed$V[1, 1, ]),

type = "l", col = "gray"
)
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